This is a very good article that we hams might enjoy reading! It’s about the first moon landing in 1969, and how video, voice, and astronauts’ heartbeats were all sent back to Earth using frequencies and modes we are familiar with today. It was all analog stuff back then, and communications were sent “in the clear” without encryption. Of course, that meant some hams got to listen in!
Note that the “S” band microwave frequencies mentioned in the article are just a hair outside of our present 13 centimeter ham band that covers 2300 to 2450 MHz. A chunk of our 13 cm band (2310-2390 MHz) got taken away a few years back, and is now used by, among others, Sirius/XM satellite radio. If you’re one of their subscribers, it might be fun to know that the music coming out of the speakers in your car is from a satellite transmitting inside of an Amateur Radio band. Think about that while you’re driving around, listening to the Beatles Channel (Ch.18)! Oh, and of course, we also share almost half of the 2.4 GHz Wi-Fi and Bluetooth band with the world. Ask me sometime how we got there…
Searching for a portable soldering station that does will not set you on fire? As we all know, many of the portable stations we have used in the past either require 120v which means local power or some sort of generator and or battery/inverter. The alternative is butane power which requires fuel, and can be a burn or fire hazard.
Many if not most of us have cordless tools these days, with spare batteries laying around. What if you could take one of those batteries and power a decent quality soldering iron?
There are power adapters that fit most of the common tool batteries now. The key is making sure you have one with a high enough voltage to power the soldering station. In my case I have Milwaukee M18 batteries, and they are perfect.
You will need:
Tool battery of your choice. 18V is ideal. Capacity does not really matter so much. A bigger battery will just give you longer run time.
Batter adapter that allows you to tap into the battery power. On Amazon.com you can find them by searching for power wheels adapter, or power connector. Some only have leads coming off the adapter. Others may have a built in USB charger or even a flashlight.
A Quicko T12-942 kit. This is a 12-24v powered soldering kit. You have to pay attention because Quicko sells several versions and most of them are 110V powered. You specifically want the DC powered one.
Once you have the parts, you will now need to do a little fabrication. You will need to get the wires from the power output of the battery adapter into the solder control box. I just drilled a pair of small holes in the back and fed the wires through, and then soldered to the back of the barrel plug internally. You can either mount the box directly to the adapter, or there are also some 3D printable boxes for a more sleek look. For my kit, I ran the wires into the box, and left the barrel plug in the back intact so I can power from the tool battery or even a laptop power supply at 19V when I have access to AC power. The batter adapter doubles as a decently stable base if using with an AC adapter.
The soldering iron works surprisingly well with the tip coming up to temperature to melt regular lead rosin core solder within about 45 seconds. It also senses movement and will shut down automatically after a short bit, and turn back on automatically when you pick it back up, and be ready to go again in about 40 seconds.
Probably should have brought this up on Tech Night. But we missed the opportunity. I need to keep an active sheet of all the crazy questions always popping into my head.
So why do we need an exposure calculator? Well, this bulletin kind of sums things up nicely. You should read it before proceeding. The FCC has adopted guidelines for RF safety, and let’s face it, as the FCC and ARRL continuously lowers the bar for the path to a license, and the hardware becomes more ubiquitous and available, any new ham with virtually no experience, can get a general license and then hook up a 1,500 watt linear in their bedroom with a square loop antenna over their bed with no real practical experience to clue them in that they just converted their bedroom into a microwave oven every time they key up.
Under new FCC guidelines operating stations will now be required to calculate RF exposure limits for stations. To make this easier for amateur stations, the ARRL now provides an online RF exposure calculator. To utilize the calculator, simply enter your peak envelope power (PEP), operating mode, and duty cycle. Many modern radios can tell you how much power you are putting into your antenna system. The calculator will then give you the minimum safe distance people must be from your antenna for safe RF exposure limits. You can print out or email the results and keep them with your station just in case someone with a badge shows up at the door (not likely), but it is certainly a good exercise for any Ham to to go through to learn more about the safety aspects of our hobby. We see things like antenna efficiency, propagation, and the like all the time. Everyone is always trying to make a better antenna. When is the last time you saw someone post the RF safety information for that same antenna, of for any antenna for that matter. Check it out.
By the way, my home configuration, =< 100 watts, and running digital modes, requires a minimum safe distance of about 3.5 ft or around 1 meter.
In last month’s Tech Net, we talked quite a bit about the fact that 10 Meters has been open. In fact, Jack, W6KRK, told us that he had been able to check into a 10 Meter net being held by the Utah County hams earlier that evening, covering a distance of about 850 miles.
10 Meters is typically described as a daylight-only band that is more often than not closed. If we stop right there, we may not realize that we’re missing out on some big fun and possibly some very interesting contacts.
Another thing of great interest is that 10 Meters contains the only sub-band that allows Novice and Technician licensees to transmit data and SSB voice signals. This gives Techs a good chance to experience the fun and technical challenges of operating on the HF bands. Technicians have unlimited operation on 6 Meters and higher, but most of the time, those high-frequency signals behave more like a beam of light, where contacts can be made locally as long as antennas can “see” each other. There is more to it than that, but I’ll leave that description to be expanded upon in another post.
Being able to get a taste of HF operation, meaning operating in the shortwave bands from about 1.8 to 30 MHz, can be both exciting and challenging to a Tech who has not had any previous experience. When I say “challenging”, I don’t mean that it represents an unpleasant or insurmountable task, only one that is new and unfamiliar. You’ll have to decide on an antenna and transceiver to use, and also learn a bit about how signals on 10 Meters behave so that you don’t waste lots of time trying to make contacts when the band is not open.
Before we talk about antennas, radios and how signals bounce around the globe, let me briefly mention some of my own experiences with the 10 Meter band. On the net, I mentioned one of my favorites being a station from French Polynesia that came on 28.410 MHz, as I recall. I had a mobile station then (about 2010), and I was on 10 Meters only because I was checking the SWR of my antenna, a Lil’ Tarheel HP “screwdriver” antenna. This antenna covers 40 through 6 meters, and uses a motor to expose more or less of the internal inductor coil, tuning it to a particular frequency. In the earliest versions of these antennas, the motor from a battery-operated electric screwdriver was used because it was cylindrically-shaped and had high torque, hence the name “scredriver” applying to all motor-tuned mobile antennas.
Anyway, as I was checking my SWR on 10 Meters in the early evening, I heard this very strong S9+10 signal that I found was from French Polynesia. Interestingly, I couldn’t hear any of the stations calling him, but he was very strong. I gave him a call on my 100-watt Yaesu FT-857 transceiver, and he answered me on my first call with an S9 report! Cool! Interestingly, his signal persisted strong and clear until he finally said he was closing down for the night, at about 9:15 PM California time. Wow! That’s unusual, but not unheard of.
I can give you many examples of contacts I’ve made on 10 Meters when the band appeared to be shut down. The usual thing to do is to tune around, and if you don’t hear anyone, set your dial to 28.400 MHz, the SSB calling frequency, and call CQ. Like me, you might be surprised to get someone calling you back! If I had just listened instead of calling CQ, I might have not made any contacts because everyone else was just listening also. So by all means, get on the mike and call if you don’t hear much.
Even in “down” times, when the 11-year sunspot cycle is at a low ebb, there are contacts to be made. Each year, from about May through September in the Northern Hemisphere, the band tends to open up, sometimes allowing even daily contacts. This will happen mostly from late morning through to early evening, but there are plenty of exceptions to that timetable as well, such as my hours-long connection to French Polynesia.
As we are now climbing up the 11-year sunspot cycle roller coaster, things are heating up on 6 and 10 meters. Especially if you are a Technician class ham with a shiny new HF transceiver, this is your moment! You can work the world when these two bands are open. 10 meters should be your “go-to” band right now, as it will open more reliably, possibly on a daily basis. 6 meters is a bit more tricky, relying most on what’s called E-Skip propagation. But when it’s open, fun things can happen as well.
Something else to listen for on both bands are the beacons. Hams have put up simple CW beacons all over the world, and they provide an easy means of telling when the band is open. Have a look at these two links to get you started with understanding how to listen for and identify what frequencies to use, and where the beacons are calling from:
One of our group is working on a very simple little one-transistor low-power 40 meter transmitter. No, the picture above is not it, although this is a fun little receiver kit you can build if you want to start with a simple kit.
Anyway, when he’s done with his little transmitter, he then faces his next hurdle: The dreaded CW monster!
Does that maybe ring true for you as well? Let me give you some encouragement, and maybe we can shine some light on the monster. You may find that he doesn’t actually bite, and is even friendly!
I’m re-posting some comments I made to Bob just tonight, and I thought I’d pass this along for you to consider:
When you get a simple radio put together, you might find that CW is your biggest challenge. I’ve always had a love/hate relationship with it–mostly love. The hard part, of course, is in getting started.
There are lots of QRP clubs around to offer encouragement and also even on-air schedules. I know I’ve mentioned the QRPARCI club on our net nights before. You may also find lots of encouragement in learning CW with the SKCC, the Straight Key Century Club: http://www.skccgroup.com/membership_data/opfreq.php
This page shows their “watering hole” frequencies. I’m listening to two SKCC members right now on 7055 kHz. They are going along at about 7 words per minute or less. The idea, of course, is to use a simple hand key instead of an electronic keyer, and to (usually, but not always) slow down. They usually call “CQ SKCC” and then exchange numbers and pleasantries. The two guys I’ve been listening to are in Florida and Rhode Island. I can hear them easily with my G5RV dipole antenna, so they’re probably running 100 watts. You don’t have to use QRP power levels if you don’t want to.
It’s fun to sit here and hand write each letter on the back of a piece of junk mail I received today as they send them. I get to think about other things for a moment, and then write down the next letter sent, etc. Very pleasant actually. Kind of like taking a slow ride through the back country roads instead of zipping down the interstate highway.
Anyway, just thought I’d pass that along to you. It’s always a bit intimidating to get on the air with CW for the first time. By the way, Jack, W6KRK, can be counted on as a helpful guy when it comes to CW. He just decided last year to dig in and re-learn CW. So if you can get him to take a few minutes on the air with you, it might help to get over the “first call” jitters. Oh wait–I could do that, too, from here in Utah! Just ask. I can be as sloooow as you’d like! We could try 20, 40 or 80 meters just about any time you want to try.
Maybe you could find some of our other friends to try, too. Building radios and then putting them on the air, at least for me, has been a lifetime passion. The “putting them on the air” part usually means CW for the simple gear, of course, and it can be tremendously satisfying when you make a contact with your little radio. Remember, too, that your first attempt does not have to be a full-on transceiver. A one- or two-transistor, crystal-controlled peanut whistle transmitter can be used just fine with your “big” HF transceiver.
This could be the kick you need to send out that stack of QSL cards you keep meaning to get in the mail. The United States Postal Service has issued the Sun Science “forever stamp” series honoring the primary enabler of the ham radio hobby, Sol. The series of stamps is printed with an embedded foil process which gives the images an extra shimmer. Designed by art director Antonio Alcala using colorized photos from our nearest star.
The forever stamp will always be equal to the current First-Class Mail 1 ounce price. You may order from usps.com/shopstamps.
This is a snapshot of this weekend’s CW contest (CQ WPX) on 20 meters going on right now at about 7:15PM Mountain time. I was tuning around on the various web-based SDR receivers you’ve heard me mention many times on our Wednesday night net. I was impressed by the wall-to-wall CW signals as seen by the Northern Utah Web SDR receiver. Just a bit crowded, don’t you think?
Oh, and those semi-solid lines on the right hand part of the SDR window are the FT8 folks happily ignoring the CW contest below them. Everybody have fun!
After last weekend’s super QSO parties, transceivers are probably still cooling down. So we’ll keep things simple…
Arkansas QSO Party
As always, there are many other events taking place across the globe. Be sure to check out https://contestcalendar.com for all the Sprints, RTTY, CW, QRP, and many other events taking place on the bands.
This weekend will be nuts. So I hope you have using those contour and notch controls down pat. It sounds so simple when you say “New England QSO party”, or “7th Area Call QSO Party” until you realize that this super radio sport weekend encompasses 16 state QSO parties! Consider this essentially a warm up event for field day
7th Area QSO Party
Arizona Idaho Montana Nevada Oregon Utah Washington Wyoming
New England QSO Party
Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont
Indiana QSO Party
Indiana
Delaware QSO Party
Delaware
As always, there are many other events taking place across the globe. Be sure to check out https://contestcalendar.com for all the Sprints, RTTY, CW, QRP, and many other events taking place on the bands.
As always, there are many other events taking place across the globe. Be sure to check out https://contestcalendar.com for all the Sprints, RTTY, CW, QRP, and many other events taking place on the bands.
You must be logged in to post a comment.